Strategy for reliable strain measurement in InAs/GaAs materials from high-resolution Z- contrast STEM images

نویسندگان

  • Maryam Vatanparast
  • Per Erik Vullum
  • Magnus Nord
  • Jian-Min Zuo
  • Turid W. Reenaas
  • Randi Holmestad
چکیده

Geometric phase analysis (GPA), a fast and simple Fourier space method for strain analysis, can give useful information on accumulated strain and defect propagation in multiple layers of semiconductors, including quantum dot materials. In this work, GPA has been applied to high resolution Z-contrast scanning transmission electron microscopy (STEM) images. Strain maps determined from different g vectors of these images are compared to each other, in order to analyze and assess the GPA technique in terms of accuracy. The SmartAlign tool has been used to improve the STEM image quality getting more reliable results. Strain maps from template matching as a real space approach are compared with strain maps from GPA, and it is discussed that a real space analysis is a better approach than GPA for aberration corrected STEM images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative strain analysis of InAs/GaAs quantum dot materials

Geometric phase analysis has been applied to high resolution aberration corrected (scanning) transmission electron microscopy images of InAs/GaAs quantum dot (QD) materials. We show quantitatively how the lattice mismatch induced strain varies on the atomic scale and tetragonally distorts the lattice in a wide region that extends several nm into the GaAs spacer layer below and above the QDs. Fi...

متن کامل

Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots

The use of GaAsSbN capping layers on InAs/GaAs quantum dots (QDs) has recently been proposed for micro- and optoelectronic applications for their ability to independently tailor electron and hole confinement potentials. However, there is a lack of knowledge about the structural and compositional changes associated with the process of simultaneous Sb and N incorporation. In the present work, we ...

متن کامل

Fabrication of InAs quantum dots in AlAs/GaAs DBR pillar microcavities for single photon sources

We report the molecular beam epitaxy growth of low-density strain-induced InAs quantum dots sQDd embedded in an AlAs/GaAs distributed Bragg reflector structure for a triggered photon source. By optimal selection of growth temperature, InAs deposited thickness and other experimental parameters, it is possible to grow low density s10/mm2d InAs quantum dots with a suitable emission wavelength for ...

متن کامل

Atomistic modeling of strain distribution in self-assembled interfacial misfit dislocation (IMF) arrays in highly mismatched III–V semiconductor materials

We describe a mathematical model to elucidate the strain energy distribution in the atomic arrangement resulting from a periodic pure edge, 901 interfacial misfit dislocation (IMF) arrays in highly mismatched III–V semiconductors. Using molecular mechanics methods, we calculate strain energy at the atomic level by considering the stretch and bend of each bond in the system under consideration. ...

متن کامل

Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots

UNLABELLED The effect of Sb spray prior to the capping of a GaAs layer on the structure and properties of InAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) is studied by cross-sectional high-resolution transmission electron microscopy (HRTEM). Compared to the typical GaAs-capped InAs/GaAs QDs, Sb-sprayed QDs display a more uniform lens shape with a thickness of about 3 ~ 4 nm r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017